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   Resumo  Tensores constitutivos de meios bianisotrópicos 

descritos por grupos magnéticos tem sido recentemente 

determinados. Alguns meios descritos por esses tensores como 

por exemplo, os meios chirais, meios omega, foram vastamente 

investigados. Entretanto, outros meios ainda precisam ser 

caracterizados. Neste artigo são apresentadas algumas formas 

de análises que podem ser aplicados em qualquer meio 

bianisotrópico. Estas análises são viabilizadas com o auxílio do 

pacote computacional Mathematica 3.0. Como forma de 

demonstração, considerou-se um meio descrito pelo grupo D . 

Investigou-se a propagação de ondas no referido meio. A 

equação da dispersão para o meio é obtida, e soluções desta 

equação são achadas e discutidas. 
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I. INTRODUÇÃO 

 

    Recentemente o interesse nos efeitos resultantes da 

interação de campos eletromagnéticos com materiais 

bianisotrópicos vêm aumentando, devido às potencialidades 

de aplicações de dispositivos recíprocos e não recíprocos 

compostos por meios bianisotrópicos, em uma vasta área de 

aplicações em óptica integrada, ondas milimétricas e 

microondas. Novos materiais vêm sendo estudados e 

propostos para o projeto de dispositivos, o que vêm atraindo a 

atenção de cientistas e pesquisadores de mundo inteiro, 

resultando em uma vasta publicação sobre o assunto. 

   Materiais artificiais, tais como ferritas, dielétricos e 

semicondutores são largamente utilizados em muitos 

dispositivos e componentes. Novos compostos materiais têm 

sido analisados nos últimos 10 anos, como exemplo, os meios 

chirais, meio-omega [1]-[4], meios Kamenetskii com 

ressonadores de ferrita [4],  meios moleculares artificiais 

Ziolkowski [5], dentre outros. Os recentes avanços 

tecnológicos em técnicas de síntese de materiais, tais como 

carbon  nanotubes [6], apontam na direção de que em breve 

poderão ser fabricados materiais artificiais. com diferentes 

parâmetros tensoriais. 

A simetria geométrica e temporal de um meio têm um 

importante fator no entendimento do seu comportamento 

eletromagnético. A simetria do meio define as suas 

propriedades ( possíveis efeitos físicos ) e as suas aplicações  
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práticas. Particularmente, a denominação dos meios 

bianisotrópicos simétricos foi definida e os tensores 

constitutivos correspondentes foram calculados em [7]-[9]. 

Um caso especial de autosoluções para meios bianisotrópicos 

foi analisado em [10]. Condições dos parâmetros tensoriais 

para meios bianisotrópicos sem-perdas foram analisados em 

[11]. Entretanto, muitos problemas neste campo ainda não 

estão solucionados, e vários novos meios ainda não foram 

caracterizados totalmente. 

   Este artigo se propõe a descrever formas analíticas para o 

estudo e soluções de problemas relacionados com a 

propagação de ondas planas em meios bianisotrópicos. O 

pacote computacional Mathematica 3.0 foi utilizado para o 

referido fim. Como exemplo, propôs-se analisar o meio 

descrito pelo grupo D, no qual meios já extensivamente 

investigados podem ser considerados casos especiais do 

mesmo. 
 

II. TEORIA 

 

   Os materiais bianisotrópicos são caracterizados por relações 

constitutivas lineares que acoplam os vetores  dos campos 

elétrico e magnético através de quatro tensores 

independentes: 

 
D=[]E+[]H                                  (1) 

 

B=[]E+[]H                                  (2) 

 

   A equação geral da dispersão para meios bianisotrópicos é 

expressa por [12]: 
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onde p = pu = k / , o vetor unitário u denota a direção de 

propagação, k é o vetor onda,  é a frequência angular, I é o 

diádico unitário.  

   A equação (3) é de quarta ordem e contém em geral um 

grande número de parâmetros, o que consequentemente 

torna-se difícil a obtenção de uma solução analítica para a 

mesma. Para se fazer uma análise qualitativa de (3), pode-se 

usar o pacote computacional Mathematica 3.0. Este pacote 

tem programas que permitem resolver equações algébricas 

analiticamente. Demonstrou-se esta possibilidade usando 

como exemplo um específico meio descrito pelo grupo D 

[9]. 

 



 

O gupo D é caracterizado por: 

 

 Um eixo principal C , ao longo do eixo z 

 Um número infinito de eixos de segunda ordem C2 

localizados no plano 0z  

 

   O meio considerado é recíproco e não magnético, 

possuindo os seguintes tensores constitutivos: 
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   Este tipo de meio pode ser realizado, por exemplo, pela 

inserção de espiras metálicas num meio dielétrico isotrópico 

hospedeiro, de tal modo que, embora as posições das espiras 

sejam aleatoriamente distribuídas, seus eixos são paralelos ao 

eixo z. A Fig.1 apresenta uma forma de realização deste 

meio. 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 - Meio bianisotrópico feito com espiras paralelas ao eixo z 

aleatoriamente distribuídas em um meio hospedeiro. 
 

   O meio em consideração tem um eixo de simetria C , 

portanto, apenas um ângulo   entre o eixo e o vetor u pode 

ser usado para fixar a direção de propagação. Considerando 

esta propriedade, o ângulo  representado na Fig.2 pode ser 

igual a zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 - Coordenadas esféricas 

III. ANÁLISE ANALÍTICA DAS CONDIÇÕES DE 

PROPAGAÇÃO 

 

   Usando (3) e levando o determinante de De a zero, obtêm-

se uma equação da seguinte forma: 

 

ap4 + bp2 + c = 0                               (5) 

 

onde: 

 

)sensencoscos( 4224  DEBa   

)sencos( 22  CDABb   

)( 2BDc   

 

As constantes independentes de  constituintes dos 

parâmetros acima são apresentados na Tabela I: 

 

TABELA I 

CONSTANTES INDEPENDENTES DE  

)(2 2

111111  A  )( 2

333333  B  

)2( 331133111133  C  )( 2

111111  D  

)2( 331133111133  E   

 

As soluções de (5) representam as constantes de propagação 

do meio (número de ondas). Observando que (5) é uma 

equação bi-quadrada, suas soluções podem ser expressas por: 
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(7) 

 

   A primeira onda caracterizada por (6) tem a constante de 

propagação 

1k  para a propagação direta e 


1k  para a 

propagação reversa. A segunda caracterizada por (7) tem a 

constante de propagação 

2k  para a propagação direta e 


2k  

para a propagação reversa. 

   As constantes de propagação (6) e (7) apresentam as 

seguintes propriedades: 

 

)()( 11    kk                               (8) 

 

)()( 22    kk                               (9) 

 

   Estas propriedades são devidas à dependência linear das 

soluções com )(sen 2  e )(cos 2  , e é uma conseqüência do 

fato de que o vetor onda k representa uma superfície de 

revolução em torno do eixo C . 

 

 

 



 

Considerando os parâmetros tensoriais, 

 

  3311  
(10) 

 
  3311   

 2

3311   

 

e substituindo (10) em (6) e (7) respectivamente, obtêm-se: 

 

                     )()( 22

1  k  
(11) 

                     )()( 22

2  k  
(12) 

 

Estas soluções representam um caso particular do meio em 

questão, e coincidem com o caso conhecido do meio chiral 

[13]. 

 

   Analisou-se as soluções (6) e (7) para seguintes casos 

particulares de propagação: 

 

- Para  = 0º, isto é, direção ao longo do eixo óptico C  

- Para  = 90º, isto é, direção perpendicular ao eixo C  

 

Obtendo-se as seguintes soluções: 

 

Para  = 0º  têm-se que: Para  = 90º  têm-se que: 
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   Para que haja propagação de uma onda em um determinado 

meio é necessário que suas respectivas constantes de 

propagação apresentem um valor finito real e diferente de 

zero. 

   Nas análises subsequentes o meio será considerado sem 

perdas e com as seguintes restrições aos parâmetros 

tensoriais: 

 

 11 , 33 , 11  e 33   são números reais e positivos 

 11  e 33  são números reais 

 

   Considerando as condições de propagação, de meio sem 

perdas e as restrições consideradas acima, investigou-se 

primeiramente seus efeitos nas soluções obtidas para os casos 

particulares ( º0  e º90 ).  

 

A análise para º0  mostra que para a onda com constante 

de propagação k1, as relações a seguir devem ser satisfeitas 

 

 

04 22  DA                                (13) 

e 

04 22  DAA                            (14) 

 

Usando os parâmetros da Tabela I em (13) e (14), 

determinou-se que as seguintes relações devem ser atendidas 

respectivamente, 

 

0μ 2

111111 ξε                                  (15) 

e 

)2( 111111111111                    (16) 

 

   Pelas considerações feitas aos parâmetros, têm-se que (13) 

sempre será verdadeira visto que (15) sempre será. Já a 

análise de (14) mostra que ela só será verdadeira se a relação 

(16) for atendida. Pode-se observar que para esta direção de 

propagação ( º0 ), as constantes de propagação não 

dependem dos parâmetros tensoriais 33 , 33  e 33 . 

 

A análise para º90 mostra que para a onda com constante 

de propagação k1, as relações a abaixo devem ser satisfeitas 

 

042  BDC                                (17) 

e 

042  BDCC                            (18) 

 

Usando os parâmetros da Tabela I em (17) e (18), 

determinou-se que as seguintes relações devem ser atendidas 

respectivamente, 
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(20) 

   Para a análise do caso geral descrito por (6) e (7) têm-se as 

seguintes condições de propagação: 

 

042  cab                                 (21) 
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0
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   Devido os parâmetros a, b e c serem formados por grandes 

expressões, não foi possível estabelecer de uma forma 

compacta nenhuma relação entre os parâmetros envolvidos, 

porém, esta tarefa pode ser feita através dos programas já 

mencionados anteriormente. Então, para a propagação de 

onda neste meio, (21) e (22) devem ser satisfeitas. 



 

IV. ANÁLISE NUMÉRICA 

 

   Uma simples análise numérica baseada em gráficos polares 

foi empregada na constante de propagação do caso geral 

descrito por (6). A análise consistiu em verificar as variações 

da constante de propagação relativa okkk /)( 11

  

(
oook   é a constante de propagação no espaço livre) 

com a variação do ângulo de propagação   e com o 

parâmetro tensorial 11. Para a esta análise foram 

considerados os seguintes parâmetros: 

 

011    o 33  

(23) 011 2   o 33  

x/3311    
oo 233   

onde x é o variável utilizada para variar o referido parâmetro 

tensorial 

 

Considerou-se quatro casos particulares para a variável x:  

 

1º) x = 2    1133 2   

2º) x = 4    1133 4   

3º) x = 8    1133 8   

4º) x= 64.  1133 64   

 

Os gráficos obtidos de k1() para os referidos valores de x 

estão mostrados respectivamente nas Figs.3-6, onde o eixo 

horizontal representa o eixo óptico C : 

 

 1133 2   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 3 – Constante de propagação relativa versus   para parâmetros do 

meio (23) considerando x=2. 
 

 

 

 

 

 1133 4   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 4 – Constante de propagação relativa versus   para parâmetros do 

meio (23) considerando x=4. 

 

 1133 8   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 5 – Constante de propagação relativa versus   para parâmetros do 

meio (23) considerando x=8. 

 

 1133 64   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 6 – Constante de propagação relativa versus   para parâmetros do 

meio (23) considerando x=64. 

 



 

   Pode-se observar que para grandes valores da variável x, ou 

seja, para valores muito pequenos do parâmetro tensorial 11, 

a constante de propagação relativa k1() tende a ter a forma 

de uma elipse. A Fig.7 mostra k1() no limite, com x= 

(11=0), 

 

 011   e 
oo 233   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 7 – Constante de propagação relativa versus   para parâmetros do 

meio (23) considerando x=. 

 

Portanto, valores pequenos de 11  implicam num aumento 

das constantes descritas por (6) nas direções de propagação 

próximas ao eixo óptico, ou seja, ângulos   próximos de 0º 

ou de 180º. Outro fator importante é observado devido (15) e 

(16), que mostram que as constantes de propagação para 

direções muito próximas de  = 0º não dependem dos 

parâmetros tensoriais 33 , 33  e 33 , ou seja, os mínimos de 

k1() verificados nos gráficos nesta região, podem ser 

atribuídos aos parâmetros tensoriais 11 , 11  e 

principalmente a 11 . Verifica-se também nos gráficos 

obtidos que as constantes apresentam em todos os casos 

valores máximos nas direções perpendiculares ao eixo óptico. 

Estes máximos podem ser considerados como uma 

contribuição dos seis parâmetros tensoriais, porém, observa-

se que 11  tem pouca influência nos valores das constantes 

nestas direções, isto pode ser concluído visto as pequenas 

diferenças de valores numéricos entre os máximos dos 

diversos casos. 

    As variações k1() com o outros parâmetros tensoriais 

assim como as variações da constante de propagação relativa 

okkk /)( 22

  foram verificadas e seus efeitos serão 

mostrados no Simpósio. 

 

 

V. CONCLUSÕES 

 

   Vários problemas nas soluções de equações de ondas planas 

em meios bianisotrópicos só são viabilizados com o uso de 

alguma ferramenta computacional. Isto é devido ao fato da 

grande necessidade de manipulações algébricas. Neste artigo, 

são propostas várias formas de análises que podem ser 

empregadas nas soluções de problemas de propagação de 

ondas planas em meios bianisotrópicos com auxílio do pacote 

computacional Mathematica 3.0. Foi proposto e analisado 

como demonstração um exemplo simples de um meio 

descrito pelo grupo D . Verificou-se que mesmo para meios 

com uma certa simplicidade, a análise fica inviabilizada sem 

o uso de alguma ferramenta computacional adequada. O 

pacote computacional Mathematica 3.0 oferece grande poder 

de manipulações algébricas literais, o que motivou os autores 

a desenvolverem um software no referido pacote para 

resolver equações de dispersão. 
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