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Resumo — Tensores constitutivos de meios bianisotropicos
descritos por grupos magnéticos tem sido recentemente
determinados. Alguns meios descritos por esses tensores como
por exemplo, os meios chirais, meios omega, foram vastamente
investigados. Entretanto, outros meios ainda precisam ser
caracterizados. Neste artigo sdo apresentadas algumas formas
de andlises que podem ser aplicados em qualquer meio
bianisotrépico. Estas analises sdo viabilizadas com o auxilio do
pacote computacional Mathematica 3.0. Como forma de
demonstragdo, considerou-se um meio descrito pelo grupo Do .
Investigou-se a propagagdo de ondas no referido meio. A
equacdo da dispersdo para o meio é obtida, e solugdes desta
equacdo sao achadas e discutidas.
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I. INTRODUCAO

Recentemente o interesse nos efeitos resultantes da
interacdo de campos eletromagnéticos com materiais
bianisotropicos vém aumentando, devido as potencialidades
de aplicagBes de dispositivos reciprocos e ndo reciprocos
compostos por meios bianisotrépicos, em uma vasta area de
aplicacbes em Optica integrada, ondas milimétricas e
microondas. Novos materiais vém sendo estudados e
propostos para o projeto de dispositivos, o que vém atraindo a
atencdo de cientistas e pesquisadores de mundo inteiro,
resultando em uma vasta publicacéo sobre o assunto.

Materiais artificiais, tais como ferritas, dielétricos e
semicondutores sdo largamente utilizados em muitos
dispositivos e componentes. Novos compostos materiais tém
sido analisados nos ultimos 10 anos, como exemplo, 0s meios
chirais, meio-omega [1]-[4], meios Kamenetskii com
ressonadores de ferrita [4], meios moleculares artificiais
Ziolkowski [5], dentre outros. Os recentes avangos
tecnoldgicos em técnicas de sintese de materiais, tais como
carbon nanotubes [6], apontam na direcdo de que em breve
poderdo ser fabricados materiais artificiais. com diferentes
pardmetros tensoriais.

A simetria geométrica e temporal de um meio tm um
importante fator no entendimento do seu comportamento
eletromagnético. A simetria do meio define as suas
propriedades ( possiveis efeitos fisicos ) e as suas aplicacdes
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praticas. Particularmente, a denominacdo dos meios
bianisotropicos simétricos foi definida e o0s tensores
constitutivos correspondentes foram calculados em [7]-[9].
Um caso especial de autosolucBes para meios bianisotrépicos
foi analisado em [10]. Condi¢des dos parametros tensoriais
para meios bianisotrépicos sem-perdas foram analisados em
[11]. Entretanto, muitos problemas neste campo ainda ndo
estdo solucionados, e varios novos meios ainda ndo foram
caracterizados totalmente.

Este artigo se propde a descrever formas analiticas para o
estudo e solugdes de problemas relacionados com a
propagacdo de ondas planas em meios bianisotrépicos. O
pacote computacional Mathematica 3.0 foi utilizado para o
referido fim. Como exemplo, propds-se analisar o meio
descrito pelo grupo D=, no qual meios ja extensivamente
investigados podem ser considerados casos especiais do
mesmo.

Il. TEORIA

Os materiais bianisotropicos sdo caracterizados por relagdes
constitutivas lineares que acoplam os vetores dos campos

elétrico e magnético através de quatro tensores
independentes:
D=[e]E+[E]H 1)
B=[C]E+[u]H @

A equacdo geral da dispersdo para meios bianisotropicos é
expressa por [12]:

D, .E=|(px1+[ED[u] . (px1-[]) + ] E=0 @)

onde p = pu = k / ®, 0 vetor unitario u denota a dire¢do de
propagacdo, k é o vetor onda, » é a frequéncia angular, 1 é o
diédico unitério.

A equacdo (3) é de quarta ordem e contém em geral um
grande ndmero de parametros, 0 que consequentemente
torna-se dificil a obtencdo de uma solucéo analitica para a
mesma. Para se fazer uma anéalise qualitativa de (3), pode-se
usar o pacote computacional Mathematica 3.0. Este pacote
tem programas que permitem resolver equacBes algébricas
analiticamente. Demonstrou-se esta possibilidade usando
como exemplo um especifico meio descrito pelo grupo D

[9].



O gupo D é caracterizado por:

e Um eixo principal C., ao longo do eixo z
e Um ndmero infinito de eixos de segunda ordem C;
localizados no plano z=0

O meio considerado € reciproco e nao magnético,
possuindo os seguintes tensores constitutivos:

py 0 0 ji&u O 0
[P]z 0 upy O [é’]:_ 0 i 0
0 0 ny 0 0 19
(4)
€11 0 0 jé:n 0 0
[e]=] 0 &, O = |0 j& o
0 0 Exs 0 0 jfss

Este tipo de meio pode ser realizado, por exemplo, pela
insercdo de espiras metdlicas num meio dielétrico isotrdpico
hospedeiro, de tal modo que, embora as posicdes das espiras
sejam aleatoriamente distribuidas, seus eixos sdo paralelos ao
eixo z. A Fig.1 apresenta uma forma de realizacdo deste
meio.
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Fig.1 - Meio bianisotrdpico feito com espiras paralelas ao eixo z
aleatoriamente distribuidas em um meio hospedeiro.

O meio em consideragdo tem um eixo de simetria Cx ,
portanto, apenas um angulo € entre o eixo e 0 vetor u pode
ser usado para fixar a direcdo de propagacdo. Considerando
esta propriedade, o angulo ¢ representado na Fig.2 pode ser
igual a zero.
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Fig. 2 - Coordenadas esféricas

l1l. ANALISE ANALITICA DAS CONDICOES DE
PROPAGACAO

Usando (3) e levando o determinante de D, a zero, obtém-
se uma equacao da seguinte forma:

ap*+bp?+c=0 (5)
onde:

a=(Bcos* @+Ecos? @sen’ 0+ Dsen* 9)
b =—(ABcos? 8 +CD sen? 6)
¢ =(BD?)

As constantes independentes de @ constituintes dos
parametros acima sdo apresentados na Tabela I:

TABELA |
CONSTANTES INDEPENDENTES DE ¢

A=2(gy 1, +EL) B = (33443, _5323)
C = (eaattiy + Ensftas + 281 &) D = (g4, —&2)
E = (3311 + 11833 — 2811 833)

As solugdes de (5) representam as constantes de propagacao
do meio (numero de ondas). Observando que (5) é uma
equacdo bi-quadrada, suas solugdes podem ser expressas por:

—b++vb? -4ac (6)

ki =+
! @ 2a
. —b-+b? —4ac 7
a

A primeira onda caracterizada por (6) tem a constante de
propagacdo k,” para a propagagdo direta e k; para a
propagacdo reversa. A segunda caracterizada por (7) tem a
constante de propagacdo k, para a propagacgdo direta e k;

para a propagagao reversa.
As constantes de propagacdo (6) e (7) apresentam as
seguintes propriedades:

ki (0) =ki (-0) ©)
ky (0) =k3 (-6) ©9)

Estas propriedades sdo devidas & dependéncia linear das
solucdes com sen? (@) e cos? (), e é uma conseqiiéncia do

fato de que o vetor onda k representa uma superficie de
revolugdo em torno do eixo Cw.



Considerando os pardmetros tensoriais,

My = Hyzs = H
Sy =& =~

2
E =€y =ty U

(10)

e substituindo (10) em (6) e (7) respectivamente, obtém-se:

ki =+ouy +(ouy)” + (o ue) ()
(12)

Ky =—ouy +(ouy)? +(o° ue)

Estas solucBes representam um caso particular do meio em
questdo, e coincidem com o caso conhecido do meio chiral
[13].

Analisou-se as solucBes (6) e (7) para seguintes casos
particulares de propagacéo:

- Para 8= 0°, isto é, direcdo ao longo do eixo optico Cx
- Para =900, isto é, direcdo perpendicular ao eixo Cx

Obtendo-se as seguintes solugdes:

Para 6= 0° tém-se que: Para =190° tém-se que:

A++A? —4D? C++C?-4BD

ki =to 5 ki =tw 5
. A-vJA?—4D? | . Cc-+C?—4BD
k; =t@ 5 ki =tw 2

Para que haja propagacdo de uma onda em um determinado
meio € necessario que suas respectivas constantes de
propagacdo apresentem um valor finito real e diferente de
zero.

Nas analises subsequentes o meio sera considerado sem
perdas e com as seguintes restricdes aos pardmetros
tensoriais:

® I4y, M3z, &1 € &3 SA0 NUMeros reais e positivos
e &, e &5 sdo nimeros reais

Considerando as condigdes de propagacdo, de meio sem
perdas e as restricbes consideradas acima, investigou-se
primeiramente seus efeitos nas solucdes obtidas para 0s casos
particulares (6 =0° e 6 =90°).

A andlise para & =0° mostra que para a onda com constante
de propagacdo ki, as relacfes a seguir devem ser satisfeitas

A?-4D?>0 (13)
e
A++A2-4D2 >0 (14)

Usando o0s pardmetros da Tabela | em (13) e (14),
determinou-se que as seguintes relacBes devem ser atendidas
respectivamente,

&1l &h =0 (15)
e
ety > =& (G +24 ety ) (16)

Pelas consideracdes feitas aos parametros, tém-se que (13)
sempre serd verdadeira visto que (15) sempre serd. Ja a
analise de (14) mostra que ela sé sera verdadeira se a relacdo
(16) for atendida. Pode-se observar que para esta dire¢do de
propagacdo (@ =0°), as constantes de propagacdo nao
dependem dos pardmetros tensoriais &;3, is3 € &a33.

A andlise para @ = 90° mostra que para a onda com constante
de propagacdo ki, as relacfes a abaixo devem ser satisfeitas

C2-4BD >0 (17)
e
C++/C?—-4BD >0 (18)

Usando os parametros da Tabela | em (17) e (18),
determinou-se que as seguintes relacdes devem ser atendidas
respectivamente,

(E3attay + &y gy + 28, 533)2 > 4551433 _5323)(511,“11 _5121)

(19)
e

(E33ttay + Er1piag +2811833) > —

\/(533:u11 + &yt 2511533)2 —A(&33433 _6(:323)(511/111 _5121)

(20)
Para a analise do caso geral descrito por (6) e (7) tém-se as
seguintes condi¢des de propagacéo:

b?-4ac>0 (21)
e
b+.b?-4ac
i S A AN ) 22)
2a

Devido os parametros a, b e ¢ serem formados por grandes
expressdes, ndo foi possivel estabelecer de uma forma
compacta nenhuma relagdo entre os parametros envolvidos,
porém, esta tarefa pode ser feita através dos programas ja
mencionados anteriormente. Entdo, para a propagacdo de
onda neste meio, (21) e (22) devem ser satisfeitas.



IV. ANALISE NUMERICA o &y =45,

Uma simples analise numérica baseada em gréaficos polares
foi empregada na constante de propagacdo do caso geral
descrito por (6). A analise consistiu em verificar as variacdes

da constante de propagacdo relativa k,(0) =k, /k,
(k, =/ p,&, € aconstante de propagacdo no espaco livre)

com a variagdo do angulo de propagagdo € e com o
parametro tensorial &3. Para a esta andlise foram
considerados 0s seguintes parametros:

1&0

M1 = Ho Mz = H,
& =28, €33 =&, (23)

Su=Exlx Ean =/20,8,

onde x é o variavel utilizada para variar o referido parametro Figura 4 — Constante de propagagéo relativa versus ¢ para parametros do
tensorial meio (23) considerando x=4.

b $a3 =881

Considerou-se quatro casos particulares para a variavel x:

1)x=2 = &;;=2&),
)x=4 = 3 =45,
P)x=8 = &3 =88,
) x=64. = £, =64&,

a0

Os graficos obtidos de ki(6) para os referidos valores de x
estdo mostrados respectivamente nas Figs.3-6, onde 0 eixo
horizontal representa o eixo optico Cx:

hd $as =281,

270

Figura 5 — Constante de propagacdo relativa versus € para parametros do
meio (23) considerando x=8.

® S35 =648y, a0

a0

Figura 3 — Constante de propagacdo relativa versus @ para parametros do
meio (23) considerando x=2.

Figura 6 — Constante de propagacao relativa versus € para parametros do
meio (23) considerando x=64.



Pode-se observar que para grandes valores da variavel x, ou
seja, para valores muito pequenos do parametro tensorial &,
a constante de propagacéo relativa ki(6) tende a ter a forma
de uma elipse. A Fig.7 mostra ki(6) no limite, com x=oo

(6u=0),
o &,=0¢e &, =,2u,¢,
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Figura 7 — Constante de propagacéo relativa versus @ para parametros do
meio (23) considerando x=co.

Portanto, valores pequenos de &1 implicam num aumento
das constantes descritas por (6) nas direcGes de propagacéo
préximas ao eixo Gptico, ou seja, angulos € préximos de 0°
ou de 180°. Qutro fator importante é observado devido (15) e
(16), que mostram que as constantes de propagagdo para
diregBes muito préximas de € = 0° ndo dependem dos
pardmetros tensoriais &,;, t33 € £33, OU Seja, 0s minimos de

ki(6) verificados nos graficos nesta regido, podem ser
atribuidos aos pardmetros tensoriais &, 4, €
principalmente a ¢&,;. Verifica-se também nos gréficos
obtidos que as constantes apresentam em todos 0s casos
valores maximos nas direcdes perpendiculares ao eixo optico.
Estes maximos podem ser considerados como uma
contribuicdo dos seis parametros tensoriais, porém, observa-
se que &, tem pouca influéncia nos valores das constantes
nestas diregdes, isto pode ser concluido visto as pequenas
diferengas de valores numéricos entre 0s maximos dos
diversos casos.

As variagBes ki(€) com o outros pardmetros tensoriais
assim como as varia¢Oes da constante de propagacao relativa
k,(0) =k, /k, foram verificadas e seus efeitos serdo
mostrados no Simposio.

V. CONCLUSOES

Varios problemas nas solucdes de equacdes de ondas planas
em meios bianisotrépicos sé sdo viabilizados com o uso de
alguma ferramenta computacional. Isto é devido ao fato da
grande necessidade de manipulagdes algébricas. Neste artigo,
sdo propostas varias formas de analises que podem ser
empregadas nas solucBes de problemas de propagacdo de
ondas planas em meios bianisotrépicos com auxilio do pacote
computacional Mathematica 3.0. Foi proposto e analisado
como demonstracdo um exemplo simples de um meio
descrito pelo grupo D.. . Verificou-se que mesmo para meios
com uma certa simplicidade, a analise fica inviabilizada sem
0 uso de alguma ferramenta computacional adequada. O
pacote computacional Mathematica 3.0 oferece grande poder
de manipulacGes algébricas literais, 0 que motivou os autores
a desenvolverem um software no referido pacote para
resolver equac@es de dispersao.
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